О кондиционерах доступно. Кондиционеры и их типы

 

ВВЕДЕНИЕ

Еще в начале 90-х годов студенты ведущих российских ВУЗов, обучавшиеся по специальности "холодильная техника", в большинстве своем не имели никакого представления о современном климатическом оборудовании. Многие даже не знали, что такое сплит-система. Впрочем, это не удивительно, ведь никакой литературы на русском языке, посвященной этой тематике, просто не было.

Сегодня информационный голод частично удовлетворен. Вышло немало книг, написанных сотрудниками уважаемых кондиционерных компаний, сделаны многочисленные переводы зарубежных авторов, внесли свою лепту различные отраслевые журналы, однако дефицит информации по-прежнему ощущается.

Причем более всего не хватает книг, написанных не в стиле институтских учебников, а доступным "человеческим" языком. Книг, которые были бы понятны не только обладателю диплома профильного ВУЗа, но и рядовым сотрудникам фирм индустрии климата. Именно такую книгу мы и постарались создать. Надеемся, что она будет полезна всем специалистам, занимающимся продажей, установкой и эксплуатацией климатической техники.

Творческий Коллектив под общим руководством Леонида Корха.

Редакция выражает признательность Георгию Литвинчуку за материалы, любезно предоставленные для первой части книги.

ЧАСТЬ ПЕРВАЯ - ОБЩИЕ СВЕДЕНИЯ

КТО ПРИДУМАЛ КОНДИЦИОНЕР?

О том, что с изнуряющим зноем можно и нужно бороться, наши далекие предки догадались еще тысячи лет тому назад. Наверное, первым холодильщиком можно считать неандертальца, обнаружившего, что в пещере даже в самые жаркие дни царит приятная прохлада.

Для того, чтобы хоть как-то спастись от жары, правители древности окружали свои дворцы тенистыми садами и водоемами, наполняли подвалы льдом, а вооруженные опахалами слуги создавали освежающее движение воздуха. И вплоть до середины XVIII века ничего лучше мальчика "арапа" так и не придумали.

Однако начавшаяся в позапрошлом столетии техническая революция очень быстро перевернула представление людей о климате. Интересно, что впервые слово кондиционер было произнесено вслух еще в 1815 году. Именно тогда француз Жанн Шабаннес получил британский патент на метод "кондиционирования воздуха и регулирования температуры в жилищах и других зданиях".

Но практического воплощения идеи пришлось ждать достаточно долго. Только в 1902 году американский инженер-изобретатель Уиллис Карриер собрал промышленную холодильную машину для типографии Бруклина в Нью-Йорке. Самое любопытное, что первый кондиционер предназначался не для создания приятной прохлады работникам, а для борьбы с влажностью, здорово ухудшавшей качество печати...

Правда уже через год аристократия Европы, приезжая в Кельн, считала своим долгом посетить местный театр. Причем живой интерес публики вызывала не только (и не столько) игра труппы, а приятный холодок, царивший в зрительном зале даже в самые знойные месяцы. А когда в 1924 году система кондиционирования была установлена в одном из универмагов Детройта, наплыв зевак был просто умопомрачительным. Впору было ввести плату за вход, впрочем, предприимчивый хозяин внакладе не остался. Эти первые аппараты и стали предками современных систем центрального кондиционирования воздуха.

"Ископаемым" предком всех современных сплит-систем и оконников может считаться первый комнатный кондиционер, выпущенный компанией General Electric еще в 1929 году. Поскольку в качестве хладагента в этом устройстве использовался аммиак, пары которого небезопасны для здоровья человека, компрессор и конденсатор кондиционера были вынесены на улицу. То есть по своей сути это устройство было самой настоящей сплит-системой! Однако, начиная с 1931 года, когда был синтезирован безопасный для человеческого организма фреон, конструкторы сочли за благо собрать все узлы и агрегаты кондиционера в одном корпусе. Так появились первые оконные кондиционеры, далекие потомки которых успешно работают и в наши дни. Более того, в США, Латинской Америке, на Ближнем Востоке, а также на Тайване, в Гонконге, в Индии и большинстве Африканских стран оконники до сих пор являются наиболее популярным типом кондиционеров. Причины их успеха очевидны: они примерно вдвое дешевле аналогичных по мощности сплит-систем, а их монтаж не требует наличия специальных навыков и дорогостоящего инструмента. Последнее особенно важно вдали от очагов цивилизации, где легче отловить снежного человека, нежели найти гражданина, знакомого с монтажом холодильной техники.

Долгое время лидерство в области новейших разработок по вентиляции и кондиционированию воздуха принадлежало американским компаниям, однако в конце 50-х, начале 60-х годов инициатива прочно перешла к японцам. В дальнейшем именно они определили лицо современной индустрии климата.

Так в 1958 году японская компания Daikin предложила первый тепловой насос, тем самым научив кондиционеры работать на тепло.

А еще через три года произошло событие, в значительной мере предопределившее дальнейшее развитие бытовых и полупромышленных систем кондиционирования воздуха. Это начало массового выпуска сплит-систем. Начиная с 1961 года, когда японская компания Toshiba впервые запустила в серийное производство кондиционер, разделенный на два блока, популярность этого типа климатического оборудования постоянно росла. Благодаря тому, что наиболее шумная часть кондиционера - компрессор - теперь вынесена на улицу, в помещениях, оборудованных сплит-системами, намного тише, чем в комнатах, где работают оконники. Интенсивность звука уменьшена на порядок! Второй огромный плюс - это возможность разместить внутренний блок сплит-системы в любом удобном месте.

Сегодня выпускается немало различных типов внутренних устройств: настенные, подпотолочные, напольные и встраиваемые в подвесной потолок - кассетные и канальные. Это важно не только с точки зрения дизайна - различные типы внутренних блоков позволяют создавать наиболее оптимальное распределение охлажденного воздуха в помещениях определенной формы и назначения.

А в 1968 году на рынке появился кондиционер, в котором с одним внешним блоком работало сразу несколько внутренних. Так появились мультисплит-системы. Сегодня они могут включать в себя от двух до шести внутренних блоков различных типов.

Существенным нововведением стало появление кондиционера инверторного типа. В 1981 году компания Toshiba предложила первую сплит-систему, способную плавно регулировать свою мощность, а уже в 1998 году инверторы заняли 95% японского рынка.

Ну и, наконец, последний из наиболее популярных в мире типов кондиционеров - VRF-системы - были предложены в 1982 году компанией Daikin.

Вехи истории.

1734 год. В здании английского парламента установлен первый из известных истории осевых вентиляторов. Он приводился в действие при помощи парового двигателя и проработал без ремонта более 80 лет.

1754 год. Леонард Эйлер разработал теорию вентилятора, которая легла в основу расчета современных систем механической вентиляции.

1763 год. Михаил Ломоносов публикует свой труд "О вольном движении воздуха в рудниках примеченном". Идеи, изложенные в этой работе, легли в основу расчета систем естественной вентиляции.

1810 год. В больнице пригорода Лондона - Дерби установлена первая рассчитанная система естественной вентиляции.

1815 год. Француз Жан Шабаннес получил британский патент на "метод кондиционирования воздуха и регулирования температуры в жилищах и других зданиях:"

1852 год. Лорд Кельвин разработал основы использования холодильной машины для обогрева помещений (тепловой насос). Спустя четыре года идея была практически реализована австрийцем Риттенгером.

1902 год. Американским инженером Уиллисом Карриером разработана первая промышленная установка для кондиционирования воздуха.

1929 год. В США компанией General Electric разработан первый комнатный кондиционер.

1931 год. Изобретение безопасного для здоровья человека хладагента - фреона - произвело настоящую революцию в развитии климатической техники.

1958 год. Компания Daikin предложила кондиционер, способный работать не только на холод, но и на тепло по принципу "теплового насоса".

1961 год. Toshiba первой в мире начала промышленный выпуск кондиционеров, разделенных на два блока, получивших название сплит-системы.

1966 год. Компания Hitachi первой в мире предложила оконный кондиционер с функцией осушения. Через четыре года она же первой внедрила эту функцию в сплит-системах.

1968 год. Компания Daikin предложила кондиционер с одним наружным и двумя внутренними блоками. Так появились мультисплит-системы.

1977 год. Toshiba впервые в мире выпускает кондиционер с микропроцессорным управлением.

1981 год. Toshiba разработала компрессор с регулируемой частотой вращения. В том же году на рынке появились оснащенные ими кондиционеры, получившие название инверторных.

1982 год. Компания Daikin разработала и внедрила в производство новый тип центральных систем кондиционирования воздуха VRF, позволяющих в комплексе решить вопросы кондиционирования и вентиляции.

1998 год. Компания Sanyo предложила VRF-систему с безынверторным регулированием мощности.

1995 год. Принято решение об отказе от использования хладагентов, представляющих опасность для озонового слоя. В Европе их производство должно быть полностью остановлено к 2014 году.

2002 год. Компания Haier впервые в мире предложила бытовой кондиционер, способный повышать концентрацию

ИСТОРИЯ КОНДИЦИОНИРОВАНИЯ В СССР

В Советском Союзе кондиционер долгое время считался непозволительной роскошью, отвлекающей пролетариат от классовой борьбы. Так в 1940 году за публикацию ряда материалов о кондиционировании воздуха был разгромлен журнал "Отопление и вентиляция". Эти статьи были восприняты как "пропаганда буржуазных взглядов в технике", и вплоть до 1955 года (когда выяснилось, что советские корабли абсолютно не приспособлены к плаванию в тропиках) эта тема оставалась под негласным запретом.

Несколько позже в 1963-65 годах в подмосковном городе Домодедово был налажен выпуск кондиционеров для узлов связи и пунктов управления ракетным оружием. Завод "Экватор" в городе Николаеве стал выпускать судовые кондиционеры, и, наконец, несколько предприятий приступило к выпуску климатического оборудования для авиации. Производство кондиционеров для промышленных нужд было освоено в Харькове, а в меньших масштабах и на ряде отраслевых предприятий.

Выпуск бытовых кондиционеров на территории Советского Союза начался только в 70-х годах, после того, как построенный в Баку завод освоил производство продукции по лицензии японской фирмы Hitachi. В свои лучшие годы, которые пришлись на середину 80-х, Бакинский завод выдавал 400-500 тысяч кондиционеров в год. Мало кто знает что в Баку был освоен выпуск первых советских сплит-систем с внутренним блоком напольного типа, но объем выпуска был очень мал.

Интересно, что порядка 120-150 тысяч кондиционеров БК ежегодно шло на экспорт. Больше всего советских оконников было продано на Кубу - порядка 700 тысяч штук. Крупными импортерами были Китай, Иран, Египет и Австралия. Причем в иные годы на зеленый континент отправлялось более 10 тысяч аппаратов.

Сейчас модно ругать БК за большие габариты и высокий уровень шума, но нельзя не признать, что они оказались на редкость неприхотливыми и долговечными. В той же Австралии некоторые аппараты работают до сих пор! К тому же советские цены так приятно радовали местных фермеров, что на родине кенгуру эту продукцию до сих пор вспоминают добрым словом.

Ни один кондиционер японского, американского, израильского или корейского производства не отличался такой долговечностью. Возможно, дело в том, что во всем мире концепция долговечности выпускаемой техники претерпела существенные изменения уже на рубеже 70-80 годов. Если ранее старались сделать на века, то теперь срок службы не превышает времени морального старения. При нынешних темпах развития техники - это не более 10 лет.

Кстати о качестве БК, выпущенных в 70-80 годах, говорит хотя бы такой факт. Завод по производству компрессоров (рассчитанный на миллион штук в год) половину продукции отправлял на экспорт, выполняя заказ компании Toshiba.

После распада СССР и отъезда лучших специалистов производство кондиционеров в Баку пошло на убыль, и к 1997-98 году окончательно развалилось. Из былых шести тысяч рабочих на предприятии осталось не более 500 человек, занятых ремонтом и обслуживанием техники. Эра БК закончилась.

Еще одним советским проектом, в настоящее время практически забытым, были кондиционеры "Нева", небольшая партия которых была сделана в Ленинграде.

Первыми кондиционерами, сделанными в России, стали оконники Fedders, которые в начале 90-х годов собирали в городе Железногорске (Курская обл.). Однако из-за невысокого качества продукции производство долго не продержалось, и к 1996 году было полностью свернуто. Эстафету подхватили в подмосковной Электростали. В 1997 году на заводе Элемаш был освоен выпуск сплит-систем из сборочных комплектов Samsung, а затем налажено производство продукции под собственной торговой маркой.

И, наконец, в 2000-2002 годах производство сплит-систем начато в подмосковном Фрязино (Rolsen), Хабаровске (ЕВГО), Москве (МВ), Ижевске (Купол), Ростове-на-Дону (Artel).

ПРИНЦИП РАБОТЫ КОНДИЦИОНЕРА

Понять, как устроен кондиционер и откуда в тридцатиградусное пекло берется освежающая прохлада, не так уж сложно. Рассмотрим это на примере сплит-системы. Как известно из школьного курса физики, при испарении любая жидкость поглощает тепло. Если налить на руку спирт или одеколон, тут же почувствуешь холод. И наоборот, при конденсации пара тепло выделяется. Именно этот известный принцип и эксплуатирует любой кондиционер.

Как он устроен?

Кондиционер представляет собой замкнутый герметичный контур, внутри которого движется специальное вещество - хладагент. Испаряясь в одном месте, он поглощает тепло, а конденсируясь в другом - выделяет поглощенное тепло. Обмен теплом хладагента с воздухом происходит через воздушные теплообменники, которые представляют собой медные трубки, снабженные тонкими поперечными алюминиевыми пластинками. Чтобы процесс теплообмена между хладагентом и воздухом шел быстрее, воздух через теплообменники продувают с помощью вентиляторов. По названию процесса, происходящего в теплообменнике, один из них называютиспарителем, а другой - конденсатором.

При работе кондиционера на "холод" в качестве испарителя выступает внутренний (находящийся в помещении) теплообменник, а в качестве конденсатора - наружный (находящийся вне помещения). При работе кондиционера на "тепло", теплообменники меняются ролями. Суть процесса изложена, но в чем секрет фокуса?

Дело в том, что холод не "производится", а происходит перенос тепла из одного места в другое с помощью хладагента. Благодаря этому и появился термин "тепловой насос". По этой же причине кондиционер "производит" тепла или холода примерно в 3 раза больше, чем потребляет электроэнергии - факт, вызывающий недоумение у людей, не обремененных знанием холодильной техники.

Что за чудо - машина с КПД 300%? И почему это загадочное вещество "хладагент" то поглощает, то отдает тепло, ведь из школьного курса физики известно, что оно всегда переходит от более нагретого тела к менее нагретому? Что заставляет хладагент переносить тепло из помещения, в котором чуть больше 20 градусов на улицу, где порой бывает под +40?

Все не просто, а очень просто! Из той же школьной физики известно, что температура фазового перехода (испарения или конденсации жидкости) зависит от давления, при котором происходит процесс.

Зависимость нелинейная и монотонная - чем больше давление, тем больше температура фазового перехода. Дальше - больше! Для того, чтобы жидкий хладагент кипел, превращаясь в пар и поглощая из окружающего воздуха тепло, в теплообменнике необходимо создать давление, при котором температура фазового перехода будет ниже, чем температура окружающего воздуха. И наоборот, парообразный хладагент будет отдавать тепло воздуху, превращаясь в жидкость, если создать давление, при котором температура фазового перехода будет выше температуры воздуха.

Но для того, чтобы кондиционер заработал, в замкнутый контур нужно встроить еще как минимум два элемента. Это компрессор, повышающий давление до давления конденсации, который установлен в контуре перед конденсатором, и дросселирующее устройство, понижающее давление додавления испарения, перед испарителем.

Перечисленные пять элементов:

  1. замкнутый контур с хладагентом,
  2. наружный теплообменник,
  3. внутренний теплообменник,
  4. компрессор,
  5. дросселирующее устройство, составляют основу холодильного контура любого кондиционера, от самого простого до самого сложного.

Для того, чтобы кондиционер мог работать не только на холод, но и на тепло, в контур необходимо добавить четырехходовой вентиль. Его задача "превращать" испаритель в конденсатор и наоборот.

Такой кондиционер называют кондиционером с реверсивным циклом, который может переносить тепло не только из помещения на улицу, но и наоборот.

Если совсем не "грешить" академизмом, холодильный контур - это совокупность устройств, с помощью которых происходит циклическое превращение хладагента из жидкого состояния в парообразное с поглощением тепла и из парообразного в жидкое - с выделением тепла.

ТИПЫ КОНДИЦИОНЕРОВ

На рынке сплит-систем принято выделять три основных сегмента: бытовые кондиционеры RAC (Room Air Conditions), полупромышленные кондиционеры - PAC (Packages Air Conditions), и промышленные системы (Unitary). Причем в Азии, Европе и Америке эти понятия имеют несколько отличные друг от друга толкования. Поскольку более 90% продаваемых в России кондиционеров имеют японское, корейское и китайское происхождение, стоит привести азиатскую классификацию, которая используется целым рядом известных специализированных изданий, например JARN.

К бытовым (RAC) отнесены сплит-системы настенного и напольно-потолочного типа мощностью до 5 кВт. Причем градация проводится по мощности внутреннего блока. Поэтому мультисплит-системы также относят к этой категории.

К полупромышленным системам (PAC) относятся все сплит-системы кассетного, колонного, напольно-потолочного и настенного типа мощностью свыше 5 кВт. Кондиционеры, образованные путем параллельного подключения 2-4 кассетных, канальных, напольно-потолочных или колонных внутренних блоков к одному внешнему, отнесены к классу PAC. (Ограничения по мощности сверху в этой категории нет, но до настоящего времени техники мощнее 17 кВт никто не предлагает). Оборудование класса VRF рассматривают либо в рамках PAC, либо выделяют в отдельную группу.

В отдельную категорию Duct Unitary выделены все канальные кондиционеры, руфтопы и шкафные моноблоки внутренней установки вне зависимости от их мощности.

В России эти рамки несколько сдвинуты, что связано с рядом национальных особенностей.

У нас в стране нет четких, согласованных всеми участниками рынка критериев разделения кондиционеров на бытовые и полупромышленные, поэтому приведем наиболее распространенные представления.

К бытовым (RAC) в России относят все сплит-системы настенного типа, вне зависимости от мощности.

К полупромышленным (PAC), все кондиционеры напольно-потолочного, кассетного, колонного типа и канальные сплит-системы от 2,5 до 25-30 кВт.

К промышленным (Unitary) в России относят канальные кондиционеры выше 25-30 кВт, все руфтопы и шкафные моноблоки. То есть фактически деление происходит не по мощности, а по типу оборудования.

Отдельная категория оборудования - центральные системы кондиционирования. К оборудованию этого класса вне зависимости от мощности относят центральные кондиционеры и приточные установки, водоохлаждающие машины - чиллеры, фанкойлы, конденсаторные блоки и градирни.

ОКОННЫЕ КОНДИЦИОНЕРЫ

Оконный кондиционер

Самыми простыми и примитивными кондиционерами, являются оконные моноблоки, хорошо знакомые нам по изделиям Бакинского завода. Такой агрегат врезается в оконный проем или прямо в тонкую стену. Причем установить оконный моноблок может любой "рукастый" мужик. Никаких специальных навыков и дорогостоящего инструмента для этого не надо. Технология производства оконников хорошо отработана, что вместе с простотой монтажа обеспечивает этим кондиционерам высокую долговечность. К тому же стоимость такого решения минимальна.

Тем не менее, у оконных кондиционеров есть ряд существенных недостатков. Уж кому-кому, а меоманам они точно не подойдут, поскольку создают слишком много лишнего шума. У всех моноблоков компрессор находится внутри помещения, а потому не жалеет децибелов для хороших людей.

Второй минус оконников в том, что они жестко привязаны к оконному проему. По этой причине кондиционировать комнату сложной формы не всегда возможно. К тому же не исключено, что они не поладят с вашими любимыми шторами. А уж жалюзи с оконными кондиционерами практически несовместимы, так как загораживают выход прохладного воздуха. Если шторы или жалюзи закрывают оконный кондиционер, он будет поддерживать приятную прохладу не в помещении, а между окном и тем, чем оно занавешено.

В-третьих, оконные кондиционеры уменьшают площадь остекления, а, следовательно, ухудшают освещенность. Ну и, наконец, есть еще целый ряд мелочей. При наличии стеклопакета установка оконника обойдется дороже самого кондиционера. Ну а на первых этажах проблему могут создать декоративные решетки.

СПЛИТ-СИСТЕМЫ

Сплит система

Название сплит-система произошло от английского слова split, обычно переводимого как "разделять, расщеплять". И действительно, в отличие от оконного кондиционера, сплит-система состоит не из одного блока, а из двух. Благодаря этому, окна можно оставить в покое, а наиболее шумный узел кондиционера - компрессор - вынести на улицу. При всем своем многообразии, сплит-системы можно разделить по типу внутреннего устройства, которое бывает настенным, напольно-потолочным, кассетным, канальным или колонным. При этом внешние блоки этих сплит-систем выглядят одинаково.

Главный плюс сплит-систем в том, что они не привязаны к оконному проему. Многообразие внутренних блоков позволяет расположить источник холода в любом удобном месте: на стене, на полу и даже за подвесным потолком. В настоящее время - это наиболее популярный в мире тип климатического оборудования, доминирующий на рынках Европы, Австралии, Японии, Китая и большинства азиатских стран.

СПЛИТ-СИСТЕМЫ КАНАЛЬНОГО ТИПА

Сплит-система канального типа

Оборудование этого класса нередко выделяют в отдельную группу из-за целого ряда конструктивных особенностей. Внутренний блок такого кондиционера находится над подвесным потолком и распределяет охлажденный воздух по сети воздуховодов. То есть в определенном смысле имеет сходство с работой центрального кондиционера. Тем более, что большинство канальных кондиционеров допускает возможность подмеса свежего воздуха в пределах 10% от пропускаемого объема. При достаточной мощности охлаждения и хорошем напоре вентилятора внутреннего блока эта сеть может охватывать сразу несколько помещений. Правда для этого необходимо наличие подвесного потолка.

В отличие от сплит-систем других типов, установка сплит-системы канального типа требует серьезной проектной проработки.

Необходимо аккуратно рассчитать сечения воздуховодов, иначе в одной комнате будет холодно, а в другой жарко.

МУЛЬТИСПЛИТ-СИСТЕМЫ

Мультисплит-система

Так называют сплит-системы, у которых с одним внешним блоком работает более одного внутреннего. Почему-то многие считают, что таким образом можно выгадать в цене чуть ли не вдвое: ведь внешний блок-то один. К сожалению, все не так просто. Хоть он и один, но его мощности должно хватить на все внутренние. Потому стоимость мультисплит-системы редко бывает ниже, чем у аналогичной по мощности и количеству внутренних блоков комбинации моносплит-систем.

Ну, а мультисплит-система с 3-7 внутренними блоками почти всегда дороже, комбинации 3-7 отдельно взятых кондиционеров.

Тем не менее, главное достоинство мультисплит-систем все-таки не цена. Их использование позволяет уменьшить количество внешних блоков (для которых еще надо найти место). Ведь украшать периметр своей квартиры угловатыми ящиками по душе далеко не всем. Некрасиво, да и служит прекрасной наводкой для домушников - простые граждане по пять кондиционеров не покупают. В то же время один единственный внешний блок можно легко замаскировать на балконе, так что его вообще не будет видно.

В последнее время наиболее популярны мультисплит-системы "конструкторы". В таких кондиционерах с одним внешним блоком может работать несколько десятков комбинаций внутренних. Причем они могут быть не только настенного типа, но и кассетными, канальными, напольно-потолочными. Это позволяет подобрать комбинацию внутренних блоков, идеально соответствующую именно вашему жилищу.

VRF-СИСТЕМЫ

VRF-система

В последние годы стало модным кондиционировать элитные квартиры и особенно коттеджи с помощью VRF-систем. Подобно сплит- и мультисплит-системам, они состоят из внешних и внутренних блоков, однако, благодаря техническим возможностям, их все чаще относят к системам центрального кондиционирования. Ведь они позволяют создавать комфорт сразу в 4-48 помещениях, общей площадью от 100 до 1000 квадратных метров, решая проблемы вентиляции и кондиционирования воздуха в комплексе.

Важным достоинством систем типа VRF является разнообразие внутренних блоков. Они могут быть настенными, кассетными, канальными, подпотолочными, напольными, что дает возможность эффективно охлаждать помещения любой планировки, не вторгаясь в существующие интерьеры. А неправдоподобно большие расстояния между внутренними и внешними блоками (до 100 метров) позволяют спрятать последние в любое малоприметное место, хоть на крышу расположенной неподалеку подсобки!

Ко всему прочему такие системы на редкость долговечны и экономичны. Они рассчитаны на эксплуатацию в течение 20-25 лет, против 6-8 у бытовых сплит-систем, а по способности беречь электроэнергию им вообще нет равных. Они тратят не более 37 Вт на квадратный метр обслуживаемой площади, что на 20-40 процентов ниже, чем у других кондиционеров. Но особенно большая экономия достигается, если часть внутренних блоков работает на холод, а другая - на тепло. Умная система просто перенесет излишки тепла из одного помещения в другое, вдвое сократив потребляемую мощность!

МОБИЛЬНЫЕ КОНДИЦИОНЕРЫ

Под этим понятием объединяют два вида систем: мобильные сплит-системы и мобильные моноблоки. Первые напоминают обыкновенные сплит-системы, за исключением того, что компрессор у них находится во внутреннем блоке (а потому изрядно шумит). При этом внешний блок, связанный с внутренним устройством гибким трубопроводом, просто вывешивается за окно.

Второй тип представляет собой моноблочную конструкцию, похожую на навороченный пылесос-переросток. Он охлаждает помещение, сбрасывая излишки тепла через толстый хобот, который необходимо вывести в окно или за дверь. Правда, умные люди делают для этого специальные отверстия в рамах, поскольку приоткрытые окна и форточки позволяют теплому воздуху проходить внутрь и сводить усилия кондиционера на нет.

Преимущество у мобильных кондиционеров только одно - они легко устанавливаются и демонтируются, а потому подходят для тех, кто часто меняет жилье или хочет брать кондиционер с собой на дачу.

А вот исхитриться и охладить с помощью одного такого аппарата трехкомнатную квартиру не получится.

Для того, чтобы в теплый день было прохладно, кондиционер должен вкалывать постоянно. Если же его перетаскивать из комнаты в комнату, ничего хорошего не получится. Пока одно помещение охладится, в другом снова будет пекло.

ЧТО УМЕЕТ КОНДИЦИОНЕР?

ОХЛАЖДАЕМ

Итак, пойдем по порядку. Безусловно, главная задача кондиционера - охлаждение воздуха. Хотя бы потому, что нагрев, осушение и очистку воздуха могут обеспечить другие, зачастую более простые и дешевые устройства, а вот давать освежающую прохладу умеет только он. Причем делает это очень экономично - на один киловатт потребляемой электроэнергии выдает порядка 3 кВт холода! Нарушения законов природы здесь нет, так как энергия тратится не на создание прохлады, а на ее перенос с улицы в помещение. В том же духе действует двоюродный брат кондиционера - холодильник, который морозит свою утробу, а излишки тепла сбрасывает со стороны задней стенки.

Правда, понижать температуру в помещении можно только до определенного предела. Большинство современных кондиционеров умеет охлаждать воздух до +17-18°С. Хотите ниже, заберитесь под выходящую из кондиционера струю - ее температура на 10-12 градусов ниже установленной на пульте ДУ. К тому же при высокой подвижности воздух кажется еще холоднее. Именно поэтому иллюзию прохлады можно создать при помощи вентилятора или разогнавшись в автомобиле. Однако увлекаться "игрой в оленеводов" все-таки не стоит, можно запросто подхватить простуду.

ГРЕЕМ

Помимо приятной прохлады многие современные кондиционеры умеют нагревать воздух. Причем заставить кондиционер работать на тепло можно двумя различными способами. В подавляющем большинстве случаев это делается с помощью так называемого теплового насоса. На самом деле никакого насоса в кондиционере нет: в этом режиме он морозит улицу и греет помещение. При наружных температурах выше -10°С такое отопление весьма эффективно. На каждый киловатт электроэнергии можно получить от 2,5 до 3,5 кВт тепла.

Правда "садировать" кондиционер в сорокоградусные морозы все-таки не стоит - толку никакого.

Чем холоднее на улице, тем меньше тепла он дает. А вот риск вывести из стоя кондиционер при низких температурах возрастает многократно. Причин для этого много, подробно они изложены в соответствующей главе, посвященной особенностям эксплуатации кондиционера зимой. Здесь назовем только наиболее часто встречающиеся последствия. Это поломка компрессора, поломка лопастей вентилятора наружного блока, сгорание электродвигателя вентилятора наружного блока.

Но если уж вам непременно хочется погреться у кондиционера в лютую стужу, можно приобрести модель с электрическим подогревом. Компрессор такого кондиционера зимой уходит в отпуск, а приятное тепло создают ТЭНы. Электричества они жрут безбожно, зато согреют в любую погоду.

ОСУШАЕМ

Помимо охлаждения и обогрева воздуха все современные кондиционеры умеют осушать воздух.

Понижая температуру воздуха, они удаляют из него лишнюю влагу. И правильно! При высокой влажности дышать трудно, и жара переносится хуже. Это можно наблюдать перед грозой, когда при плюс 23 и пасмурном небе, начинаешь обливаться потом. Тут уж никакая "Рексона" не поможет - только кондиционер. Во всех современных моделях даже есть такой режим - "осушение". Это когда температура воздуха почти не изменяется, а влажность падает. А вот поддерживать ее на заданном уровне бытовой кондиционер просто не умеет.

Не спасет он и в другом случае: если в квартире или коттедже имеется бассейн. Тут необходимы специальные осушители, иначе дом неминуемо покроется плесенью.

ВЕНТИЛИРУЕМ

В режиме вентиляции не происходит ни охлаждения, ни нагрева, а создается циркуляция находящегося в помещении воздуха и его очистка (при наличии соответствующих фильтров). Компрессор и вентилятор наружного блока при это выключены, а вентилятор внутреннего блока работает на скорости, заданной с ПДУ.

ОЧИЩАЕМ

Ну и, наконец, четвертая функция кондиционера - очистка воздуха. Большинство современных сплит-систем и оконников имеют только один фильтр - воздушный механический. Он защищает наши легкие и теплообменник внутреннего блока от пыли, тополиного пуха и прочего болтающегося в воздухе мусора. Замены воздушный фильтр не требует, однако, время от времени его необходимо мыть в теплой воде или чистить с помощью пылесоса. Если этого не делать, нормальная циркуляция воздуха нарушается, кондиционер почти не холодит.

А вот фильтры тонкой очистки, способные улавливать мельчайшую пыль, пыльцу растений, запахи, сигаретный дым, у многих моделей не входят в стандартную комплектацию и приобретаются отдельно. Чаще всего их изготавливают из активированного угля, полученного из кокосовых орехов, а потому они называются угольными (карбоновыми) или дезодорирующими. Время, в течение которого фильтры тонкой очистки сохраняют работоспособность, сильно зависит от условий эксплуатации.

Однако в больших городах они редко выдерживают больше 3-4 месяцев. После этого их необходимо выбрасывать, поскольку отслуживший свое фильтр становится настоящим рассадником микробов.

Исключение - фотокаталитические (цеолитные) фильтры, которые частично восстанавливаются под воздействием ультрафиолетовых лучей и могут использоваться многократно.

Однако стоит иметь ввиду, что при большом загрязнении воздуха разумнее и выгоднее использовать специальные воздухоочистители.

В ряде моделей современных кондиционеров имеется индикатор состояния фильтра внутреннего блока. Включение светового индикатора на передней панели блока указывает на необходимость очистки фильтра. Правда, этот датчик реагирует не на фактическое засорение фильтра, а на предполагаемое время службы и включается раз в два-три месяца.

Фильтры.

ПЛАЗМА. Вместо привычного фильтра-дезодоратора на основе активированного угля, используется плазменный ионизатор, создающий напряжение в 4800 Вольт. Этот своеобразный "электрический стул" уничтожает любую угодившую в кондиционер органику, например, микробов, вирусы, грибки, пыльцу растений. Более крупные механические загрязнения, такие как пыль, ионизируются и налипают на фотокаталитический фильтр. Он же частично разряжает воздух, ионизированный при прохождении через систему "Плазма".

Такая схема значительно эффективнее традиционной. Например, при очистке воздуха от табачного дыма такой кондиционер за 30 минут удалит 70% содержащихся в воздухе частиц - вдвое больше, чем традиционный фильтр. К тому же система типа "Плазма" не требует периодической замены, а потому дешевле в эксплуатации. Системы фильтрации, основанные на этом принципе, на российском рынке предлагают компании LG и Fujitsu General.

КАТЕХИНОВЫЙ ФИЛЬТР. Электростатический фильтр с катехиновым покрытием - патентованная разработка Panasonic. Катехин - сильный природный антисептик, который содержится в чайных листьях и ряде других растений. Недаром чай издревле использовался в восточной медицине как лекарственное растение. Ученые выяснили механизм действия катехина: для того, чтобы прикрепиться к здоровой клетке, большинство вирусов использует специальные шипы, а катехин обволакивает болезнетворные организмы, лишая их этой способности. Опыты показали, что 98% попавших на фильтр вирусов через шесть часов уже не представляют опасности для человека. В 2003 году помимо Panasonic катехиновый фильтр предложили компании Samsung и Sanyo.

ВАСАБИ ФИЛЬТР. В патентованной разработке Fujitsu General электростатический фильтр имеет специальную обработку веществами, полученными из хрена "васаби", хорошо знакомого любителям японской кухни. Он, как и наш российский родственник, обладает сильными бактерицидными свойствами и издавна используется в народной медицине.

ЦЕОЛИТНЫЙ (ФОТОКАТАЛИТИЧЕСКИЙ) ФИЛЬТР. Такой угольный фильтр поглощает запахи как любой другой, но, в отличие от аналогов, его не надо менять каждые три-четыре месяца.

После засорения его необходимо несколько часов подержать под прямыми солнечными лучами, и он восстанавливает свою дезодорирующую способность на 95%.

Принцип его регенерации основан на способности двуокиси титана TiO2 (известной как титановые белила) расщеплять любую органику на оксиды углерода, воду и другие безвредные соединения под воздействием прямых солнечных лучей. При этом двуокись титана не расходуется и выступает в роли катализатора.

На начало 2003 года из представленных в России кондиционеров регенерируемыми фильтрами с использованием двуокиси титана были оснащены: Toshiba, Panasonic, Daikin, Mitsubishi Heavy, LG, Carrier, Tadiran, Toyo, Ballu.

БИО. Заглянув в кондиционер Samsung Bio, хочется исполнить детскую песенку из мультика 20-летней давности: "какое все красивое, какое все зеленое!" Действительно, внутрянка кондиционера Samsung, включая фильтры, теплообменник, поддон для сбора конденсата и вентилятор, обработана каким-то зеленым составом. Утверждается, что он препятствует размножению бактерий, но принцип действия не разглашается.

ДОБЫВАЕМ КИСЛОРОД

В 2003 году на российском рынке появились сплит-системы, способные увеличить концентрацию кислорода в кондиционируемом помещении. Как известно, воздух состоит в основном из кислорода и азота, поэтому, удаляя излишки одного, можно повысить концентрацию другого. Это достигается за счет модуль-генератора, который использует физический метод разделения газов. При помощи компрессора воздух поступает в (PSA) сепаратор, где азот поглощается, а кислород возвращается в помещение. Когда один из сепараторов наполняется, включается другой, а азот из первого удаляется наружу. Таким образом, два сепаратора работают попеременно.

Некоторые модели кондиционеров способны выполнять функции приточной вентиляции, для этого они используют дополнительный воздуховод, через который вентилятор кондиционера подает свежий воздух в помещение.

ИОНИЗИРУЕМ

Некоторые современные модели оснащены ионизатором воздуха. В 2003 году такие кондиционеры представили на российский рынок сразу четыре производителя: Electra, Haier, Panasonic, Samsung и Toshiba.

Ученые обнаружили, что в местах, где человек чувствует наибольший прилив сил - около водопадов, на морском побережье, в горах - концентрация отрицательно заряженных частиц-аэронов максимальна. В тоже время в жилищах и офисах она в сотни раз ниже.

Количество отрицательных ионов в см3
В районе водопада 50.000
На морском побережье 10.000
В горах 5.000
В сельской местности 1.500
В городах 1.000
В квартирах и офисах 50

Кондиционеры, оснащенные безозоновыми ионизаторами, способны довести концентрацию отрицательных ионов до 15.000 - 30.000 на см3.

Дополнительные функции.

  1. "Sleep mode", или таймер сна, создает оптимальные условия для отдыха и позволяет экономить электроэнергию. При нажатии этой клавиши в течение некоторого времени температура снижается на 2 градуса, а затем поддерживается с точностью +/-2°C в течение срока, установленного таймером, после чего кондиционер отключается. В режиме "Sleep mode" скорость вентилятора внутреннего блока фиксируется на минимальном значении, чтобы снизить уровень шума. Иногда "Sleep mode" называют "Econo mode". Присутствует фактически во всех современных сплит-системах.
  2. Включение автоколебаний жалюзи. Нажав на кнопку "Swing", мы задаем автоматическое движение воздухораспределительных заслонок вверх-вниз. Это способствует более равномерному распределению воздушного потока по помещению. С помощью клавиши "Air Flow Direction" можно установить воздушные заслонки в каком-то одном положении. Нередко кнопки управления жалюзи снабжены рисунком, поясняющим суть выполняемых операций. Присутствует фактически во всех современных сплит-системах.
  3. Таймер на включение/выключение. Как правило, кондиционеры имеют один 24-часовой таймер, позволяющий задать время включения и выключения кондиционера в заранее заданном режиме, однако встречаются и исключения. Например, таймер на 12 часов или один таймер на включение, другой - на выключение. Присутствует фактически во всех современных сплит-системах.
  4. "Turbo" режим, он же "Jet Cool". Иногда эта клавиша обозначается как "Powerfull". Применяется для скорейшего выхода на режим. При ее включении кондиционер выдает в режиме порядка 110-120% номинальной мощности до тех пор, пока необходимая температура не будет достигнута. Правда, в таком темпе кондиционер может работать не более получаса, так как это равносильно езде со скоростью 50 км/ч на второй передаче. У инверторных кондиционеров, где скорость вращения двигателя компрессора регулируется, этот режим выполняется автоматически. Применяется во многих современных моделях.
  5. 5"I Feel". Переносит точку измерения температуры с внутреннего блока на пульт управления. При включении кнопки "I Feel" кондиционер будет поддерживать заданную температуру именно в той точке, в которой находится пульт, при этом направление воздушного потока не изменяется.
    Этой функцией стоит пользоваться, если вы один в помещении. Если вы находитесь в дальнем углу и выставили + 20°С в режиме охлаждения, то наверняка заморозите тех, кто сидит ближе к внутреннему блоку, так как они окажутся в зоне еще более низких температур. Используется в кондиционерах фирм Airwell, Ballu, Electra, Mitsubishi Electric, Panasonic, Tadiran.
  6. Инфракрасный сенсор присутствия - "Intelligent Eye", что можно перевести как "Умное око". Если в комнате находятся люди или животные, кондиционер будет работать в обычном режиме (автоматика должна фиксировать легкое шевеление хотя бы раз в 20 минут). Такое замедление выбрано не случайно, так как по утверждению физиологов так долго может не двигаться только спящий или усопший. Если помещение покинуто, аппарат самостоятельно переходит в экономичный режим. В этом случае температура поддерживается с меньшей точностью: +/-2 градуса от заданного уровня. На первый взгляд мелочь, но это позволяет получать 20-30 процентную экономию электроэнергии. Используется компанией Daikin.
    Похожим образом действует кондиционер Haier, оснащенный сенсором "Smart Eye", только при отсутствии людей в помещении аппарат выключается. А вот если погасить свет, он автоматически переходит в экономичный режим. Соответственно при включении света (наступлении утра) или появлении людей такой кондиционер начинает работать в обычном режиме. В 2003 году подобная система появилась и в кондиционерах Gree серии Digital.
  7. GSM устройство, позволяющее управлять кондиционером на расстоянии, при помощи мобильного телефона. Используется с кондиционерами DeLonghi и LG.

Дополнительные функции, выполняемые автоматически.

  1. "Auto Restart". Возобновляет работу кондиционера в прежнем режиме при кратковременном отключении электроэнергии. Как правило, сохраняет в памяти параметры настройки в течение 48 часов.
  2. "Hot Start". Если на улице отрицательная температура, а кондиционер включен на обогрев, то первые несколько минут вентилятор внутреннего блока не включается, для того, чтобы предотвратить подачу холодного воздуха в помещение.
  3. Инверторное управление мощностью кондиционера возможно при наличии специального блока - инвертора, плавно регулирующего частоту оборотов компрессора в зависимости от необходимой мощности (компрессор обычного кондиционера работает короткими включениями на полную мощность). Плавность работы компрессора инверторного типа дает ему такие преимущества перед обычными компрессорами, как долговечность (основной износ компрессора происходит на пусковых режимах), экономичность (до 44 % экономии электроэнергии), более низкие пусковые токи. Последнее особенно важно при использовании большого количества кондиционеров в зданиях со слабой проводкой. Благодаря тому, что кондиционер инверторного типа большую часть времени работает на малой скорости вентилятора внутреннего блока, субъективно он шумит меньше, чем стандартные модели. Ведь зачастую наше ухо особенно остро реагирует не на шум, а на его скачки.

ХЛАДАГЕНТЫ

Хладагенты

Первый, признанный историками техники комнатный кондиционер, выпущенный в 1929 году компанией General Electric, работал на аммиаке.

Это вещество небезопасно для человека, что в значительной мере сдерживало развитие холодильной техники.

Проблема была разрешена в 1931 году, когда был синтезирован безвредный для человеческого организма хладагент - фреон. Впоследствии было синтезировано более четырех десятков различных фреонов, отличающихся друг от друга по свойствам и химическому составу. Наиболее дешевыми и эффективными оказались R-11, R-12, которые долгое время всех устраивали. Правда, в последние 15 лет они попали в немилость из-за своих озоноразрушающих свойств.

Вообще, бурная эволюция хладагентов в последние 15 лет связана в основном с проблемами экологии. Используемые в кондиционерах и холодильниках фреоны были названы главными виновниками печально известных озоновых дыр (что весьма сомнительно). Так это на самом деле или нет, но 1987 году был принят Монреальский протокол, ограничивающий использование озоноразрушающих веществ. В частности, согласно этому документу, производители будут вынуждены отказаться от использования фреона R-22, на котором сегодня работает 90% всех кондиционеров. В большинстве европейских стран продажа кондиционеров на этом фреоне будет прекращена уже в 2002-2004 годах. И многие новые модели уже поставляются в Европу только на озонобезопасных хладагентах - R-407C и R-410A.

Хладагент
Свойства R-22 R-410A R-407C
Изотропность
(возможность дозаправки кондиционера при утечке)
да да нет
Масло минеральное полиэфирное полиэфирное
Давление при температуре конденсации +43°С 16 атм. 26 атм. 18 атм.
Цена за килограмм USD 4,8 32,7 29,4

В отличие от традиционных хладагентов, R-407C и R-410А являются смесями различных фреонов, а потому менее удобны в эксплуатации. Так в состав R-407C, созданного в качестве альтернативы R-22, входят три фреона: R-32 (23%), R-125 (25%) и R-134a (52%). Каждый из них отвечает за обеспечение определенных свойств: первый способствует увеличению производительности, второй исключает возгорание, третий определяет рабочее давление в контуре хладагента.

Эта смесь не является изотропной, а потому при любых утечках хладагента его фракции улетучиваются неравномерно, и оптимальный состав меняется. Таким образом, при разгерметизации холодильного контура кондиционер нельзя просто дозаправить. Остатки хладагента необходимо слить и заменить новым. Именно это и стало основным препятствием для распространения R-407C.

К тому же его "экологичность" на практике может привести к дополнительной нагрузке на окружающую среду. Эвакуированный из кондиционеров фреон необходимо утилизировать, а в России или странах Азии с этим никто не станет связываться. Его просто стравят в ближайшей подворотне. И хотя для озонового слоя R-407C не опасен, он является одним из наиболее сильных "парниковых газов".

Хладагент марки R-410A, состоящий из R-32 (50%) и R-125 (50%) является условно изотропным. То есть при утечке смесь практически не меняет своего состава, а потому кондиционер может быть просто дозаправлен. Однако и R-410A не лишен некоторых недостатков. В отличие от R-22, который хорошо растворим в обыкновенном минеральном масле, новые хладагенты предполагают использование синтетического полиэфирного масла. Что это означает на практике?

Полиэфирное масло обладает одним очень существенным недостатком - оно быстро поглощает влагу, теряя при этом свои свойства. Причем при хранении, транспортировке и заправке необходимо исключить не только попадание капельной влаги, но и контакт с влажным воздухом, из которого масло активно впитывает воду. К тому же оно не растворяет любые нефтепродукты и органические соединения, которые становятся потенциальными загрязняющими веществами.

Кроме того, само климатическое оборудование на R-410A при той же производительности получается существенно дороже. Причина в более высоком рабочем давлении. Так при температуре конденсации +43°С, у R-22 оно составляет около 16 атм., а у R-410A - порядка 26 атм. По этой причине все узлы и детали холодильного контура кондиционера на R-410A, включая компрессор, должны быть более прочными. Это существенно увеличивает расход меди и делает всю систему более дорогой.

И, наконец, сами озонобезопасные хладагенты стоят в несколько раз дороже традиционных. Так за килограмм R-410A придется выложить в 7 раз больше, чем за килограмм привычного R-22. Немногим дешевле R407C, на который активно переводится полупромышленная гамма оборудования. Здесь будет 6-кратная разница, а с учетом того, что при любой утечке его надо сливать, реальные расходы на фреон вырастут на порядок. Следует учесть и тот факт, что с ростом рабочего давления количество утечек неизбежно увеличится, поскольку прочность паяных, а главное вальцованных соединений остается прежней.

Все фреоны - это вещества, образованные на основе двух газов - метана СН4 и этана - СH3-CH3. В холодильной технике метан имеет марку R-50, этан - R-70.

Все остальные фреоны получаются из метана и этана замещением атомов водорода атомами хлора и фтора.

Например, всем известный R-22 получается из метана замещением одного атома водорода хлором и двух - фтором. Химическая формула этого фреона - СНF2Cl.

Физические свойства хладагентов зависят от содержания трех составляющих - хлора, фтора и водорода.

Так по мере уменьшения количества атомов водорода горючесть хладагентов падает, а стабильность растет.

Они могут подолгу существовать в атмосфере, не разлагаясь на части, и наносить вред окружающей среде. А по мере увеличения числа атомов хлора растет токсичность хладагентов и их озоноразрушающая способность.

Вред, наносимый фреонами озоновому слою, оценивается величиной озоноразрушающего потенциала, который равен 0 для озонобезопасных хладагентов (R-410A, R-407C, R-134a) и до 13 у озоноразрушающих (R-10, R-110). При этом за единицу принят озоноразрушающий потенциал фреона R-12, до последнего времени наиболее широко распространенного во всем мире.

В качестве временной альтернативы R-12 был выбран фреон R-22, озоноразрушающий потенциал которого составляет 0,05.

КАК ПОДОБРАТЬ КОНДИЦИОНЕР

Для того, чтобы правильно подобрать кондиционер, необходимо вычислить теплопоступления, которые он должен погасить. Мощность кондиционера должна перекрывать их максимальное значение, которое рассчитывается по формуле:

Q = Q1+Q2+Q3+Q4+Q5, где

Q1 - теплопоступления от солнечной радиации, а при использовании электрического освещения, от искусственного света.
Q2 - теплопоступления от находящихся в помещении людей.
Q3 - теплопоступления от офисного оборудования.
Q4 - теплопоступления от бытовой техники.
Q5 - теплопоступления от отопления.

1. Теплопоступление от солнечной радиации. Прежде всего, зависит от площади и расположения окон. В большинстве случаев именно оно и составляет львиную долю всего поступающего в помещение тепла.

А) На широте Москвы теплопоступления через один квадратный метр остекления будут:

Северная ориентация - 81 Вт/м2
Южная ориентация - 198 Вт/м2
Юго-восточная ориентация - 244 Вт/м2
Северо-западная ориентация - 302 Вт/м2
Юго-западная ориентация - 302 Вт/м2
Северо-восточная ориентация - 337 Вт/м2
Восточная ориентация - 337 Вт/м2
Западная ориентация - 395 Вт/м2
Горизонтальное остекление - 576 Вт/м2

Если окно затенено деревьями или имеются плотные светлые жалюзи, приведенные величины делят на коэффициент 1,4.

Б) Теплопоступления от стен существенно меньше, поэтому в ряде случаев ими пренебрегают:

Северная ориентация - 19 Вт/м2
Северо-восточная ориентация - 34 Вт/м2
Южная ориентация - 36 Вт/м2
Северо-западная ориентация- 30 Вт/м2
Восточная ориентация - 40 Вт/м2
Юго-восточная ориентация - 40 Вт/м2
Западная ориентация - 43 Вт/м2
Юго-западная ориентация - 47 Вт/м2
Межкомнатные перегородки, потолок и пол - 2-15 Вт/м2, в среднем 8-9 Вт/м2
Потолок последнего этажа. При наличии чердака - 23-70 Вт/м2, без чердака - 47-186 Вт/м2 в зависимости от конструкции крыши и чердака.

В ряде случаев учитывают и капитальность стен, умножая или деля приведенные значения на коэффициент 1,2.

В) Кроме того, необходимо учесть вентилируемый объем помещения (объем за вычетом оборудования и мебели) из расчета 6 Вт на 1 м3 жилого или офисного помещения и 19 Вт на 1 м3 магазина, кафе или ресторана.

Г) Если вдруг теплопоступления через остекление меньше теплопоступлений от искусственного освещения, то в расчет принимаются именно эти величины. Можно посчитать мощность лампочек, исходя из того, что теплопоступления от ламп накаливания равны их мощности, а для люминесцентных ламп используется коэффициент 1,16. Можно поступить и по другому. Учитывая, что есть стандарты освещенности помещений, теплопоступления от искусственного света можно взять из расчета 25-30 Вт на 1 м3.

Необходимо учесть, что приведенные здесь значения справедливы для широты Москвы, а огрублены для средней полосы России. Где-нибудь в Краснодаре теплопоступления будут существенно больше.

В ряде источников, например книге, изданной компанией Евроклимат, дается упрощенная методи- ка оценки теплопоступлений от солнечной радиации: Q1 = S h q

где: S- площадь помещения (м2), h - высота помещения (м), q - коэффициент, равный:
- 30 Вт/м3, если в помещение не попадают солнечные лучи (северная сторона здания);
- 35 Вт/м3 для обычных условий;
- 40 Вт/м3, если помещение имеет большое остекление с солнечной стороны.

Расчет по этой методике применим для квартир и небольших офисов, в других случаях погрешнос- ти могут быть слишком велики.

2. Теплопоступления от находящихся в помещении людей. Один человек в зависимости от рода занятий выделяет

Отдых в сидячем положении - 120 Вт
Легкая работа в сидячем положении - 130 Вт
Умеренно активная работа в офисе - 140 Вт
Легкая работа стоя - 160 Вт
Легкая работа на производстве - 240 Вт
Медленные танцы - 260 Вт
Работа средней тяжести на производстве - 290 Вт
Тяжелая работа - 440 Вт

3. Теплопоступления от офисного оборудования. Обычно они принимаются в размере 30% от потребляемой мощности. Для примера:

Компьютер - 300-400 Вт
Лазерный принтер - 400 Вт
Копировальный аппарат - 500-600 Вт

4. Теплопоступления от бытовой кухонной техники.

Кофеварка с греющей поверхностью - 300 Вт
Кофемашина и электрочайник - 900-1500 Вт
Электроплита - 900-1500 Вт на 1 м2 верхней поверхности
Газовая плита - 1800-3000 Вт 1 м2 верхней поверхности
Фритюрница - 2750-4050 Вт
Тостер - 1100-1250 Вт
Вафельница - 850 Вт
Гриль - 13500 Вт на 1 м2 верхней поверхности

При наличии вытяжного зонта, теплопоступления от плиты делятся на 1,4.

При расчете теплопоступлений от бытовой кухонной техники необходимо учитывать, что все приборы сразу никогда не включаются. Поэтому берется наивысшая для данной кухни комбинация. Например, две из четырех конфорок на плите и электрочайник.

5. В ряде случаев, в высоких зданиях с большой площадью остекления, кондиционирование бывает необходимо уже в марте, когда отопительный сезон еще не закончен. В этом случае в расчете необходимо учитывать теплоизбытки от системы отопления, которые можно принять равными 80-125 Вт на 1 м2 площади. В этом случае надо учитывать не теплопоступления от внешних стен, а теплопотери, которые можно принять равными 18 Вт на 1 м2.

ПРИМЕР РАСЧЕТА

Посчитаем теплопоступления для жилой комнаты, расположенной на 4-м этаже капитального 12-этажного жилого дома. Два окна 2х1,8 м2 выходят на юг, затенены деревьями. Площадь комнаты 4,67х6=28 м2, высота потолка 2,7 м, семья из 4 человек.

Пусть это будет зал, в котором семья собирается на обед и для просмотра телевизора.

1. Теплопоступления от солнечной радиации

А) Через окна: Q=2х1,8х2х198/1,4=1018 Вт.

Б) Теплопоступления через потолок, пол и стены:
28х2х9+2,7х(4,67х2+6)х9+(6х2,7-2х1,8х2)х36 =504+373+324=1201 Вт.
Если бы соседние комнаты кондиционировались, то теплопоступления от межкомнатных перегородок можно было не учитывать.

Г) Теплопоступления от искусственного освещения
28х30=840 Вт. Они ниже, чем теплопоступления от солнечного освещения, поэтому их не учитываем. При окнах северной ориентации и малой площади остекления бывает и наоборот.

Д) Необходимо учесть теплоемкость находящегося в помещении воздуха или другими словами объем помещения. Считаем что 6 м3 занимает мебель.
(28х2,7-6)х6=417 Вт
Итого, Q1=1018+1201+417=2636 Вт.

Если рассчитывать поступления от солнечной радиации по упрощенной методике, получим: Q1=28x2,7x35=2646 Вт. Как видим, в случае с типовой квартирой расхождения составляют 0,4%. А вот если бы кондиционировалась вся квартира, то подсчет по подробной методике дал бы для рассматриваемой комнаты Q1=2313 Вт, и расхождение с упрощенной методикой составило бы 14,4%. В ряде случаев это может привести к необходимости установки более мощной модели.

Максимальные расхождения при подсчете по двум приведенным методикам получаются для больших помещений с маленькой площадью остекления. Там упрощенная методика может давать ошибки в полтора-два раза.

2. Теперь подсчитаем теплопоступления от людей: Q2=130х4=520 Вт

3-4. И, наконец, теплопоступления от офисной и бытовой техники сводятся к поступлениям тепла от домашнего кинотеатра: Q3-4 = 300 Вт.

Итого получаем: Q = 2636 + 520 + 300 Вт = 3456 Вт.

Существуют и еще более точные методики расчета, учитывающие широту и долготу города, для которого производится расчет, материалы из которого сделаны стены здания и толщину этих слоев, облицовку, наличие утепления, тип остекления, наличие штор или жалюзи и многие другие нюансы. Пожалуй, наиболее подробной является методика, изложенная в пособии 2.91 к СНиП 2.04.05-91 "Расчет поступления теплоты солнечной радиации в помещениях", которая базируется на следующих нормативных документах:

СНиП 23-01-99 "Строительная климатология";
СНиП II-3-79 "Строительная теплотехника";
СНиП 2.04.05-91 (2000) "Отопление, вентиляция и кондиционирование".

Она реализована в виде программы, которая находится в открытом доступе на сайте московского представительства MITSUBISHI ELECTRIC  в разделе "Специалистам / В помощь проектировщику".

Программа позволяет проводить вычисления в режиме On-line, выдавая результат в виде удобных таблиц, показывающих почасовые поступления тепла в помещение.

P.S. Широко распространенная программа, составленная по методике компании Daikin Харитоновым А. Б. и Харитоновым Б. П., для рассмотренного случая дает максимальные теплопоступления: Q=4610 Вт и рекомендует модель кондиционера мощностью не менее Q=3227 Вт (По этой методике считаются максимальные теплопоступления и учитывается коэффициент неодновременности равный 0,7). Для нашего случая итоговое расхождение двух методик составило 6,6%.

 

Часть 2